1. Abdelshiheed, M., & Chi, M. (2020). Metacognition and motivation: The role of time-awareness in preparation for future learning S. Denison, M. Mack, Y. Xu, & B.C. Armstrong (Eds.).
2. Andrychowicz, M., Baker, B., & et al. (2018). Learning dexterous in-hand manipulation. arXiv:1808.00177.
3. Ausin, M. S., Azizsoltani, H., Barnes, T., & Chi, M. (2019). Leveraging deep reinforcement learning for pedagogical policy induction in an intelligent tutoring system. In Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019), vol. 168, p. 177. ERIC.
4. Ausin, M.S., Azizsoltani, H., Ju, S., Kim, Y., & Chi, M. (2021). Infernet for delayed reinforcement tasks: Addressing the temporal credit assignment problem. In Y. Chen, H. Ludwig, Y. Tu, U.M. Fayyad, X. Zhu, X. Hu, S. Byna, X. Liu, J. Zhang, S. Pan, V. Papalexakis, J. Wang, A. Cuzzocrea, & C. Ordonez (Eds.) 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, December 15-18, 2021, pp. 1337–1348. IEEE. https://doi.org/10.1109/BigData52589.2021.9671827.
5. Ausin, M.S., Maniktala, M., Barnes, T., & Chi, M. (2020). Exploring the impact of simple explanations and agency on batch deep reinforcement learning induced pedagogical policies. In I.I. Bittencourt, M. Cukurova, K. Muldner, R. Luckin, & E. Millán (Eds.) Artificial Intelligence in Education - 21st International Conference, AIED 2020, Ifrane, Morocco, July 6-10, 2020, Proceedings, Part I, Lecture Notes in Computer Science, vol. 12163, pp. 472–485. Springer. https://doi.org/10.1007/978-3-030-52237-7_38.