Hierarchical Multi-task Learning for Organization Evaluation of Argumentative Student Essays

Author:

Song Wei1,Song Ziyao1,Liu Lizhen1,Fu Ruiji23

Affiliation:

1. College of Information Engineering and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China

2. State Key Laboratory of Cognitive Intelligence, iFLYTEK Research, China

3. iFLYTEK AI Research (Hebei), Langfang, China

Abstract

Organization evaluation is an important dimension of automated essay scoring. This paper focuses on discourse element (i.e., functions of sentences and paragraphs) based organization evaluation. Existing approaches mostly separate discourse element identification and organization evaluation. In contrast, we propose a neural hierarchical multi-task learning approach for jointly optimizing sentence and paragraph level discourse element identification and organization evaluation. We represent the organization as a grid to simulate the visual layout of an essay and integrate discourse elements at multiple linguistic levels. Experimental results show that the multi-task learning based organization evaluation can achieve significant improvements compared with existing work and pipeline baselines. Multiple level discourse element identification also benefits from multi-task learning through mutual enhancement.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3