Dual‐scale BERT using multi‐trait representations for holistic and trait‐specific essay grading

Author:

Cho Minsoo1ORCID,Huang Jin‐Xia1ORCID,Kwon Oh‐Woog1

Affiliation:

1. Language Intelligence Research Section Electronics and Telecommunications Research Institute Daejeon Republic of Korea

Abstract

AbstractAs automated essay scoring (AES) has progressed from handcrafted techniques to deep learning, holistic scoring capabilities have merged. However, specific trait assessment remains a challenge because of the limited depth of earlier methods in modeling dual assessments for holistic and multi‐trait tasks. To overcome this challenge, we explore providing comprehensive feedback while modeling the interconnections between holistic and trait representations. We introduce the DualBERT‐Trans‐CNN model, which combines transformer‐based representations with a novel dual‐scale bidirectional encoder representations from transformers (BERT) encoding approach at the document‐level. By explicitly leveraging multi‐trait representations in a multi‐task learning (MTL) framework, our DualBERT‐Trans‐CNN emphasizes the interrelation between holistic and trait‐based score predictions, aiming for improved accuracy. For validation, we conducted extensive tests on the ASAP++ and TOEFL11 datasets. Against models of the same MTL setting, ours showed a 2.0% increase in its holistic score. Additionally, compared with single‐task learning (STL) models, ours demonstrated a 3.6% enhancement in average multi‐trait performance on the ASAP++ dataset.

Funder

Institute for Information and Communications Technology Promotion

Publisher

Wiley

Reference52 articles.

1. The intelligent essay assessor: applications to educational technology;Foltz P. W.;Interact Multimed. Elecron. J. Comput‐Enhanced Learn.,1999

2. Automated essay scoring with e‐rater® V. 2;Attali Y.;J. Tech. Learn. Assessment,2006

3. The imminence of… grading essays by computer;Page E. B.;Phi Delta Kappan,1966

4. Automated essay scoring using Bayes' theorem;Rudner L. M.;J. Tech. Learn. Assessment,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3