Long-Term Human Motion Prediction by Modeling Motion Context and Enhancing Motion Dynamics

Author:

Tang Yongyi1,Ma Lin2,Liu Wei2,Zheng Wei-Shi3

Affiliation:

1. School of Electronics and Information Technology, Sun Yat-sen University

2. Tencent AI Lab

3. School of Data and Computer Science, Sun Yat-sen University

Abstract

Human motion prediction aims at generating future frames of human motion based on an observed sequence of skeletons. Recent methods employ the latest hidden states of a recurrent neural network (RNN) to encode the historical skeletons, which can only address short-term prediction. In this work, we propose a motion context modeling by summarizing the historical human motion with respect to the current prediction. A modified highway unit (MHU) is proposed for efficiently eliminating motionless joints and estimating next pose given the motion context. Furthermore, we enhance the motion dynamic by minimizing the gram matrix loss for long-term motion prediction. Experimental results show that the proposed model can promisingly forecast the human future movements, which yields superior performances over related state-of-the-art approaches. Moreover, specifying the motion context with the activity labels enables our model to perform human motion transfer.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D skeleton-based human motion prediction using spatial–temporal graph convolutional network;International Journal of Multimedia Information Retrieval;2024-07-29

2. Enhanced spatial–temporal dynamics in pose forecasting through multi-graph convolution networks;International Journal of Machine Learning and Cybernetics;2024-06-25

3. Commonsense Spatial Knowledge-aware 3-D Human Motion and Object Interaction Prediction;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

4. DeformMLP: Dynamic Large-Scale Receptive Field MLP Networks for Human Motion Prediction;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

5. PoseTron: Enabling Close-Proximity Human-Robot Collaboration Through Multi-human Motion Prediction;Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction;2024-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3