A Sequence-to-Set Network for Nested Named Entity Recognition

Author:

Tan Zeqi1,Shen Yongliang1,Zhang Shuai1,Lu Weiming1,Zhuang Yueting1

Affiliation:

1. College of Computer Science and Technology, Zhejiang University

Abstract

Named entity recognition (NER) is a widely studied task in natural language processing. Recently, a growing number of studies have focused on the nested NER. The span-based methods, considering the entity recognition as a span classification task, can deal with nested entities naturally. But they suffer from the huge search space and the lack of interactions between entities. To address these issues, we propose a novel sequence-to-set neural network for nested NER. Instead of specifying candidate spans in advance, we provide a fixed set of learnable vectors to learn the patterns of the valuable spans. We utilize a non-autoregressive decoder to predict the final set of entities in one pass, in which we are able to capture dependencies between entities. Compared with the sequence-to-sequence method, our model is more suitable for such unordered recognition task as it is insensitive to the label order. In addition, we utilize the loss function based on bipartite matching to compute the overall training loss. Experimental results show that our proposed model achieves state-of-the-art on three nested NER corpora: ACE 2004, ACE 2005 and KBP 2017. The code is available at https://github.com/zqtan1024/sequence-to-set.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. KCB-FLAT: Enhancing Chinese Named Entity Recognition with Syntactic Information and Boundary Smoothing Techniques;Mathematics;2024-08-30

2. Nested Named Entity Recognition based on Span and Efficient Global Pointer;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

3. Composited-Nested-Learning with Data Augmentation for Nested Named Entity Recognition;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

4. Demonstration-Based and Attention-Enhanced Grid-Tagging Network for Mention Recognition;Electronics;2024-01-05

5. SpanMRC: Query with Entity Length for MRC-Based Named Entity Recognition;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3