1. Cao, J., et al.: Electronic medical record entity recognition via machine reading comprehension and biaffine. Discrete Dyn. Nat. Soc. 2021 (2021)
2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
3. Doddington, G.R., Mitchell, A., Przybocki, M.A., Ramshaw, L.A., Strassel, S.M., Weischedel, R.M.: The automatic content extraction (ACE) program-tasks, data, and evaluation. In: Lrec, Lisbon, vol. 2, pp. 837–840 (2004)
4. Dong, C., Zhang, J., Zong, C., Hattori, M., Di, H.: Character-based LSTM-CRF with radical-level features for Chinese named entity recognition. In: Lin, CY., Xue, N., Zhao, D., Huang, X., Feng, Y. (eds.) ICCPOL NLPCC 2016 2016. LNCS, vol. 10102, pp. 239–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50496-4_20
5. Du, X., Jia, Y., Zan, H.: MRC-based medical NER with multi-task learning and multi-strategies. In: Sun, M., et al. (eds.) CCL 2022. LNCS, vol. 13603, pp. 149–162. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18315-7_10