Worst-Case Discriminative Feature Selection

Author:

Liao Shuangli1,Gao Quanxue1,Nie Feiping2,Liu Yang1,Zhang Xiangdong1

Affiliation:

1. State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an, 710071, China

2. School of Computer Science, OPTIMAL, Northwestern Polytechnical University, Xi’an, 710072, China

Abstract

Feature selection plays a critical role in data mining, driven by increasing feature dimensionality in target problems. In this paper, we propose a new criterion for discriminative feature selection, worst-case discriminative feature selection (WDFS). Unlike Fisher Score and other methods based on the discriminative criteria considering the overall (or average) separation of data, WDFS adopts a new perspective called worst-case view which arguably is more suitable for classification applications. Specifically, WDFS directly maximizes the ratio of the minimum of between-class variance of all class pairs over the maximum of within-class variance, and thus it duly considers the separation of all classes. Otherwise, we take a greedy strategy by finding one feature at a time, but it is very easy to implement. Moreover, we also utilize the correlation between features to help reduce the redundancy and extend WDFS to uncorrelated WDFS (UWDFS). To evaluate the effectiveness of the proposed algorithm, we conduct classification experiments on many real data sets. In the experiment, we respectively use the original features and the score vectors of features over all class pairs to calculate the correlation coefficients, and analyze the experimental results in these two ways. Experimental results demonstrate the effectiveness of WDFS and UWDFS.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3