LSH-GAN enables in-silico generation of cells for small sample high dimensional scRNA-seq data

Author:

Lall Snehalika,Ray SumantaORCID,Bandyopadhyay Sanghamitra

Abstract

AbstractA fundamental problem of downstream analysis of scRNA-seq data is the unavailability of enough cell samples compare to the feature size. This is mostly due to the budgetary constraint of single cell experiments or simply because of the small number of available patient samples. Here, we present an improved version of generative adversarial network (GAN) called LSH-GAN to address this issue by producing new realistic cell samples. We update the training procedure of the generator of GAN using locality sensitive hashing which speeds up the sample generation, thus maintains the feasibility of applying the standard procedures of downstream analysis. LSH-GAN outperforms the benchmarks for realistic generation of quality cell samples. Experimental results show that generated samples of LSH-GAN improves the performance of the downstream analysis such as feature (gene) selection and cell clustering. Overall, LSH-GAN therefore addressed the key challenges of small sample scRNA-seq data analysis.

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3