Robust trajectory tracking control for autonomous vehicle subject to velocity-varying and uncertain lateral disturbance

Author:

Wang Yuqiong1,Gao Song1,Wang Yuhai2,Wang Pengwei1,Zhou Yingchao1,Xu Yi1

Affiliation:

1. School of Transportation and Vehicle Engineering, Shandong University of Technology, China

2. State Key Laboratory of Automotive Simulation and Control, Jilin University, China / Qingdao Automotive Research Institute, Jilin University, China

Abstract

Autonomous vehicles are the most advanced intelligent vehicles and will play an important role in reducing traffic accidents, saving energy and reducing emission. Motion control for trajectory tracking is one of the core issues in the field of autonomous vehicle research. According to the characteristics of strong nonlinearity, uncertainty and chang-ing longitudinal velocity for autonomous vehicles at high speed steering condition, the robust trajectory tracking control is studied. Firstly, the vehicle system models are established and the novel target longitudinal velocity planning is carried out. This velocity planning method can not only ensure that the autonomous vehicle operates in a strong nonlinear coupling state in bend, but also easy to be constructed. Then, taking the lateral location deviation minimiz-ing to zero as the lateral control objective, a robust active disturbance rejection control path tracking controller is designed along with an extended state observer which can deal with the varying velocity and uncertain lateral dis-turbance effectively. Additionally, the feedforward-feedback control method is adopted to control the total tire torque, which is distributed according to the steering characteristics of the vehicle for additional yaw moment to enhance vehicle handing stability. Finally, the robustness of the proposed controller is evaluated under velocity-varying condi-tion and sudden lateral disturbance. The single-lane change maneuver and double-lane change maneuver under vary longitudinal velocity and different road adhesions are both simulated. The simulation results based on Matlab/Simulink show that the proposed controller can accurately observe the external disturbances and have good performance in trajectory tracking and handing stability. The maximum lateral error reduces by 0.18 meters compared with a vehicle that controlled by a feedback-feedforward path tracking controller in the single-lane change maneuver. The lateral deviation is still very small even in the double lane change case of abrupt curvature. It should be noted that our proposed control algorithm is simple and robust, thus provide great potential for engineering application.

Publisher

Index Copernicus

Subject

Transportation,Automotive Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Fuzzy Quasi-SMC-Based Steering Control of Autonomous Vehicle Subject to Parametric Uncertainties and Disturbances;International Journal of Automotive Technology;2024-08-01

2. Design of Intelligent Control System for Self-Driving Automobile Trajectory Based on BP Neural Network Algorithm;2024 Asia-Pacific Conference on Software Engineering, Social Network Analysis and Intelligent Computing (SSAIC);2024-01-10

3. Design of quasi fuzzy sliding mode based maneuvering of autonomous vehicle;International Journal of Dynamics and Control;2023-10-25

4. Research on Robust Control of Intelligent Vehicle Adaptive Cruise;World Electric Vehicle Journal;2023-09-25

5. Design of robust path tracking controller using model predictive control based on steady state input;Journal of Mechanical Science and Technology;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3