Affiliation:
1. Air Force Institute of Technology, Warsaw, Poland
Abstract
Maintaining continuity of use is extremely important in the modern world and in particular in the armed forces. Analysis of the system exploitation course allows obtaining information about the time in which the system was in a state of total or partial capability or in a state of inability to use. Based on information about the amount of time spent in a given state, user of the system or device can plan the operation of the device in the context of the future. On the basis of operating data, operational readiness can also be calculated, which information can be found in the article. The fallowing paper presents the possibilities and conditions of forming operating readiness for full and partial capability states of a ZSŁ (Integrated Communications Systems) with its selected components current serviced at AFIT (Air Force Institute of Technology). A probabilistic approach to the analysis of the issues associated with the determination and prediction of reliability and capability of integrated communications systems was discussed, with the use of the theory of operating states and Markov chains. The assumptions to the adopted method of modelling operating states for electronically integrated ZSŁ type communications systems were presented. Conditions for the determination of operational readiness and the possibility of forming it on the basis of an IT system were presented based on the obtained results of analytical studies. The article also presents the test stand for the integrated communication system. Information on capability of individual system components is also included, an example is based on the SK1 communication server. It's presented graph of transitions between it's individual partial capability states. The server can be in five operating states. By modelling individual components of the system in this way, you can estimate how the system will behave during operation. At the end of the article there is information about the actual and estimated operational readiness of the system.
Subject
Transportation,Automotive Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献