The role of mechanical, chemical and physical bonds in metal-ceramic bond strength

Author:

Czepułkowska W.1,Wołowiec-Korecka E.1,Klimek L.1

Affiliation:

1. Institute of Material Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland

Abstract

Purpose: A review regarding the mechanisms of metal-ceramic join is presented. Design/methodology/approach: The impact of the air-abrasion parameters on the mechanical bond strength of the ceramic crowns was discussed. The presence of opaque on the chemical bond was analysed. Research of the influence of the difference in the coefficient of thermal expansion values on the metal-ceramic bond was included. The methods of testing the bond strength were analysed. Findings: The metal substructure-dental ceramic bond strength is affected by all types of bond. In bond strength, 3-point bending test and shear test are mainly used. Created samples simulate the ceramic crowns veneered on one side. The role of physical bond on ceramic crowns veneered around metal substructure is unknown. Research limitations/implications: The prosthetic restorations with the ceramic surrounding whole the metal substructure are commonly used. The impact of shrinkage in the cylindrical deposition of the ceramic on metal substructure should be analysed. Practical implications: Numerical analysis and FEM simulation can be helpful in the analysis of the physical bond between the metal substructure and the dental ceramic around it. Originality/value: The impact of the type of the bond to metal-ceramic bond strength is presented, taking into account the cognitive gap in the influence of the coefficient of thermal expansion on the cylindrical placement of ceramic on the substructure.

Publisher

Index Copernicus

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3