Affiliation:
1. Department of Mechanical Engineering, Mepco Schlenk Engineering College Sivakasi, Tamilnadu, 626 005, India
Abstract
With the ever-growing demand for conventional fuels, the improvement in the efficiency of the photovoltaic system is the need of the hour. Antireflection coatings enhance the availability of solar power by reducing the percentage of light reflected. A new coating has been developed to improve the solar cell's overall efficiency. This study focuses on enhancing the efficiency of the monocrystalline solar cell when a coating of ZnO-MoO3 is applied at a certain thickness.
A layer of ZnO followed by MoO3 is deposited on a Silicon solar cell substrate using a Pulsed Laser Deposition process. Due to the transmissivity d between the two materials, they act as excellent antireflection coating. The layer thickness has been engineered to lie in the maximum absorption spectrum of monocrystalline silicon solar cells, which is between 400 and 800 nanometers.
Based on the calculation of transmissivities for a given layer thickness of coating material, the coating has been done, and the efficiencies of the coated specimen were compared with the uncoated solar cell. The percentage improvement in the electrical efficiency of a single crystalline silicon solar cell with an anti-reflection coating at 1059 W/m2 is about 35.7%.
Among the available antireflection coating materials, the combination that provides better efficiency when coated on top of a solar cell is hard to find.
This anti-reflection coating could be a better solution to enhance the overall efficiency of the single crystalline silicon solar cell.
Although ZnO and MoO3 coatings have been investigated separately for improvement in solar cell efficiency with varying levels of success, the hybrid coating of ZnO/MoO3 with a performance enhancement of 35.7% is a great leap.
Subject
Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science