Four-parameter electromagnetic method for determining the parameters of brewery effluents

Author:

Sebko V.V.1,Pyrozhenko Ye.V.1,Zashchepkina N.M.2,Zdorenko V.G.2,Markina O.M.2

Affiliation:

1. Department of Chemical Engineering and Industrial Ecology, National Technical University «Kharkiv Polytechnic Institute», Kirpicheva Str. 2, Kharkiv, 61000, Ukraine

2. Department of Information and Measurement Technologies, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremohy Ave., 37, Kyiv, 03056, Ukraine

Abstract

of the article is to study a four-parameter electromagnetic method for joint measurements of electrical resistivity k, relative permittivity εr, temperature t and density ρ of samples of acidic, alkaline and average effluents from a microbrewery based on a magnetic flux probe (MFP), which considers the influence of informative parameters of beer effluents on the components of the amplitude and phase signals of a multiparameter device. The implementation of the four-parameter method is carried out on the basis of the dependences G1 = f (A1) and G2 = f (A2) at two frequencies of the electromagnetic field f0 and f1 for acid, alkaline and average effluent and allows you to jointly determine the four parameters of effluent samples with the same converter in the same control area. The proposed method makes it possible to improve the accuracy of identifying effluent samples since the obtained multiparameter information makes it possible to determine the nature and properties of effluent samples using only one transducer with certain physical characteristics. The research results lead to the expansion of the technical capabilities of electromagnetic measurement methods, as well as to an increase in the metrological characteristics of electromagnetic transducers and an increase in the accuracy of measuring the parameters of effluent samples compared to reference methods and measuring instruments. Thus, the implementation of this approach contributes to the prediction and prevention of the reasons for the deviation of beer effluent samples from the specified indicators of environmental safety. The universal conversion functions MFP have been established, connecting the amplitude and phase components of the converter signals with the parameters k, εr, t and ρ of acidic, alkaline and average effluents. Based on the universal transformation functions G1 = f (A1) and G2 = f (A2), a four-parameter electromagnetic method for joint measurements of electrical resistivity k, relative permittivity εr, temperature t and density ρ of acidic, alkaline, and average effluents from breweries has been developed. When conducting research at two close frequencies of the electromagnetic field f0 = 20.3 MHz and f1 = 22 MHz, algorithms were obtained for measuring and calculating procedures for determining k, εr, t and ρ for samples of acidic, alkaline and average effluents from the brewing industry. Research perspectives consist in the creation of automated systems for multiparameter measuring control of the physicochemical characteristics of acidic and alkaline effluent from food and processing industries based on the immersed electromagnetic transducer. Based on the data obtained using informative methods to measure the parameters of effluent samples, an integrated method for treating beer effluents of various compositions will be proposed. At the same time, the scheme of the integrated treatment method should include a filter that provides the introduction of a magnetic fluid and a separation device that allows us to remove a fraction, including pollution in itself. Is that the proposed four-parameter electromagnetic method makes it possible to determine to what composition the controlled samples of wastewater should be attributed (acidic or alkaline). It, in turn, makes it possible to choose a rational method for treating beer effluents and to prevent the reasons for the deviation of effluent samples from the environmental safety indicators set by the standards. of the article is the research related to the expansion of the functional and technical capabilities of the electromagnetic two-frequency transducer MFP through the implementation of a four-parameter electromagnetic method of joint measurements of electrical resistivity k, relative permittivity εr, temperature t and density ρ of acidic, alkaline and average effluents from breweries. The universal transformation functions G1 = f (A1) and G2 = f (A2) found in the work at two close magnetic field frequencies, f0 = 20.3 MHz and f1 = 22 MHz, make it possible to control four physicochemical parameters of acidic, alkaline and average wastewater at the same time by the same MFP. An algorithm has been developed for determining the signal components of a two-frequency thermal MFP, the ranges of which correspond to the ranges of changes in electrical resistivity k, relative permittivity εr, temperature t and density ρ of acidic, alkaline, and average brewery effluents. The basic relations that describe the two-frequency four-parameter electromagnetic method of joint measurements of the physicochemical parameters of acidic, alkaline and averaged beer effluents have been obtained.

Publisher

Index Copernicus

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3