Influence of UV radiation on TiO2 nanoparticles antibacterial behaviour

Author:

Szmajnta K.1,Szindler M.M.2

Affiliation:

1. Student in the Faulty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland

2. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland

Abstract

Purpose: The influence of UV radiation on the antibacterial properties of titanium oxide nanoparticles was examined using yeast Saccharomyces cerevisiae strain for this purpose. Design/methodology/approach: Nanopowders were made with sol-gel method. Surface morphology studies of the obtained materials were made using Zeiss's Supra 35 scanning electron microscope. In order to confirm the chemical composition of observed nanopowders, qualitative tests were performed by means of spectroscopy of scattered X-ray energy using the Energy Dispersive Spectrometer (EDS). The DLS (Dynamic Light Scattering) method was used to analyse the particle size distribution using the AntonPaar Litesizer 500 nanoparticle size analyser. Changes in particle size distribution at elevated temperatures were also observed. The antibacterial properties of titanium oxide nanoparticles were examined by subjecting the yeast sample to irradiation with an UV lamp. Findings: Samples containing yeast Saccharomyces cerevisiae were irradiated with and without the addition of TiO2 nanoparticles. A faster decrease in the colony count was observed compared to irradiated exposures without the addition of a suspension. Practical implications: Presented materials can be used in the production of antibacterial coatings for surfaces occurring in public spaces such as schools, hospitals, public toilets for the simple and effective elimination of bacteria and fungi as a result of exposures. Originality/value: The antibacterial properties of titanium oxide nanoparticles under UV radiation were confirmed.

Publisher

Index Copernicus

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3