The characterization study of inhibited silica/silicate scale using vinyl sulfonated copolymer (VS-Co)

Author:

Sazali R.A.b.1ORCID,Sorbie K.S.2,Boak L.S.2,Azman A.Z.1,Mohd Saaid I.b.3,Dollah A.b.1,Kassim Shaari N.Z.b.1,Ismail K.N.b.1

Affiliation:

1. School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia

2. Flow Assurance and Scale Team, Institute of GeoEnergy Engineering, Heriot-Watt University, UK EH14 4AS, Edinburgh, Scotland, United Kingdom; School of Energy, Geoscience, Infrastructure and Society (EGIS), Heriot-Watt University, UK EH14 4AS, Edinburgh, Scotland, United Kingdom

3. Centre of Research in Enhanced Oil Recovery (COREOR), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Petroleum Engineering Department, Faculty of Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

Abstract

Silica/silicate scale is a significant problem, especially in oilfield production during Alkaline Surfactant Polymer (ASP) flooding, where chemical inhibitors are the preferred method to prevent them. In this study, the effect of inhibitor vinyl sulfonated copolymer (VS-Co) on silica/silicate scale formation was analysed using X-Ray Diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR).The functional group type of VS-Co are sulfonate ions, SO3-, and these interact in the scaling process. Bulk-inhibited scaling brine tests were conducted at 60C and pH 8.5. During these tests, the silicon brine (with VS-Co) representing the inhibited ASP leachate was mixed with a magnesium brine representing the connate water to replicate reservoir conditions during ASP flooding. The samples tested in this study were non-inhibited Si/Mg mixed brine of 60 ppm Mg2+ and 940 ppm Si4+ (60Mg:940Si) as a blank, and inhibited 60Mg:940Si mixture with various VS-Co concentrations of 20 ppm, 50 ppm, and 100 ppm. The inhibition efficiency of the VS-Co was determined, followed by the characterisation study of the silica/silicate scale deposited from both test conditions.The IR spectra of all 60Mg:940Si samples show a similar peak at 1050 cm-1 to 1080 cm-1, attributed to a Si-O covalent bond and a band at 790 cm-1 to 800 cm-1 showing the presence of Si-O-Si stretching. XRD patterns produced a broad scattering peak for all samples at 2 of 24 showing that the samples are amorphous silica. For tests of high Mg2+ in the brine mix, 900Mg:940Si, a mix of crystalline silica and crystalline magnesium silicate was produced. Based on these results, it can be concluded that the scale formed even with 100 ppm of VS-Co present. Further studies are required to address how to mitigate scale formation effectively in the future.Based on the research conducted, we can conclude that the VS-Co alone could not significantly inhibit the formation of silica/silicate scale even at the highest concentration (100 ppm) of VS-Co. However, having VS-Co present caused an alteration in IR spectra frequency which requires further investigation to assess how best to develop the inhibiting properties of the VS-Co product. The application of nanoparticles and their successful stories spark the interest of authors in searching for an efficient method of managing the silica/silicate scale where the modification of potential scale inhibitor (SI) with nanoparticles may be able to improve the inhibition efficiency towards the silicate/silicate scale.The presence of VS-Co in the scaling brine only slightly inhibits the Mg2+ ion (initially comes from connate water) from reacting. It is worth further investigation on how this VS-Co can make it happen. Hence, the functional groups responsible for this may be altered by adding other functional groups to provide a synergistic effect in preventing this silica/silicate scale; or by modifying the VS-Co with nanoparticles to improve their adsorption/desorption capacity.The newly developed technique in analysing the inhibition mechanism of a chemical inhibitor using various spectroscopic analysis is promising where an alteration in the spectra may provide proof of the chemicals inhibition efficiency.

Publisher

Index Copernicus

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3