Developing and validating a primary care EMR-based frailty definition using machine learning

Author:

Williamson Tyler,Aponte-Hao Sylvia,Mele Bria,Cord Lethebe Brendan,Leduc Charles,Thandi Manpreet,Katz Alan,Wong Sabrina

Abstract

Introduction. Individuals who have been identified as frail have an increased state of vulnerability, often leading to adverse health events, increased health spending, and potentially detrimental outcomes. Objective. The objective of this work is to develop and validate a case definition for frailty that can be used in a primary care electronic medical record database. Methods. This is a cross-sectional validation study using data from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN) in Southern Alberta. 52 CPCSSN sentinels assessed a random sample of their own patients using the Rockwood Clinical Frailty scale, resulting in a total of 875 patients to be used as reference standard. Patients must be over the age of 65 and have had a clinic visit within the last 24 months. The case definition for frailty was developed using machine learning methods using CPCSSN records for the 875 patients. Results. Of the 875 patients, 155 (17.7%) were frail and 720 (84.2%) were not frail. Validation metrics of the case definition were: sensitivity and specificity of 0.28, 95% CI (0.21 to 0.36) and 0.94, 95% CI (0.93 to 0.96), respectively; PPV and NPV of 0.53, 95% CI (0.42 to 0.64) and 0.86, 95% CI (0.83 to 0.88), respectively. Conclusion. The low sensitivity and specificity results could be because frailty as a construct remains under-developed and relatively poorly understood due to its complex nature. These results contribute to the literature by demonstrating that case definitions for frailty require expert consensus and potentially more sophisticated algorithms to be successful

Publisher

Swansea University

Subject

Information Systems and Management,Health Informatics,Information Systems,Demography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3