Evaluation of the ASSIGN open-source deterministic address-matching algorithm for allocating Unique Property Reference Numbers to general practitioner-recorded patient addresses

Author:

Harper Gillian,Stables David,Simon Paul,Ahmed Zaheer,Smith Kelvin,Robson JohnORCID,Dezateux CarolORCID

Abstract

IntroductionLinking places to people is a core element of the UK government's geospatial strategy. Matching patient addresses in electronic health records to their Unique Property Reference Numbers (UPRNs) enables spatial linkage for research, innovation and public benefit. Available algorithms are not transparent or evaluated for use with addresses recorded by health care providers. ObjectivesTo describe and quality assure the open-source deterministic ASSIGN address-matching algorithm applied to general practitioner-recorded patient addresses. MethodsBest practice standards were used to report the ASSIGN algorithm match rate, sensitivity and positive predictive value using gold-standard datasets from London and Wales. We applied the ASSIGN algorithm to the recorded addresses of a sample of 1,757,018 patients registered with all general practices in north east London. We examined bias in match results for the study population using multivariable analyses to estimate the likelihood of an address-matched UPRN by demographic, registration, and organisational variables. ResultsWe found a 99.5% and 99.6% match rate with high sensitivity (0.999,0.998) and positive predictive value (0.996,0.998) for the Welsh and London gold standard datasets respectively, and a 98.6% match rate for the study population. The 1.4% of the study population without a UPRN match were more likely to have changed registered address in the last 12 months (match rate: 95.4%), be from a Chinese ethnic background (95.5%), or registered with a general practice using the SystmOne clinical record system (94.4%). Conversely, people registered for more than 6.5 years with their general practitioner were more likely to have a match (99.4%) than those with shorter registration durations. ConclusionsASSIGN is a highly accurate open-source address-matching algorithm with a high match rate and minimal biases when evaluated against a large sample of general practice-recorded patient addresses. ASSIGN has potential to be used in other address-based datasets including those with information relevant to the wider determinants of health.

Publisher

Swansea University

Subject

Information Systems and Management,Health Informatics,Information Systems,Demography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3