FLAP: a framework for linking free-text addresses to the Ordnance Survey Unique Property Reference Number database

Author:

Zhang Huayu,Casey Arlene,Guellil Imane,Suárez-Paniagua Víctor,MacRae Clare,Marwick Charis,Wu Honghan,Guthrie Bruce,Alex Beatrice

Abstract

IntroductionLinking free-text addresses to unique identifiers in a structural address database [the Ordnance Survey unique property reference number (UPRN) in the United Kingdom (UK)] is a necessary step for downstream geospatial analysis in many digital health systems, e.g., for identification of care home residents, understanding housing transitions in later life, and informing decision making on geographical health and social care resource distribution. However, there is a lack of open-source tools for this task with performance validated in a test data set.MethodsIn this article, we propose a generalisable solution (A Framework for Linking free-text Addresses to Ordnance Survey UPRN database, FLAP) based on a machine learning–based matching classifier coupled with a fuzzy aligning algorithm for feature generation with better performance than existing tools. The framework is implemented in Python as an Open Source tool (available at Link). We tested the framework in a real-world scenario of linking individual’s (n=771,588) addresses recorded as free text in the Community Health Index (CHI) of National Health Service (NHS) Tayside and NHS Fife to the Unique Property Reference Number database (UPRN DB).ResultsWe achieved an adjusted matching accuracy of 0.992 in a test data set randomly sampled (n=3,876) from NHS Tayside and NHS Fife CHI addresses. FLAP showed robustness against input variations including typographical errors, alternative formats, and partially incorrect information. It has also improved usability compared to existing solutions allowing the use of a customised threshold of matching confidence and selection of top n candidate records. The use of machine learning also provides better adaptability of the tool to new data and enables continuous improvement.DiscussionIn conclusion, we have developed a framework, FLAP, for linking free-text UK addresses to the UPRN DB with good performance and usability in a real-world task.

Publisher

Frontiers Media SA

Subject

Health Informatics,Medicine (miscellaneous),Biomedical Engineering,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3