An efficient deep neural network accelerator using controlled ferroelectric domain dynamics

Author:

Majumdar SayaniORCID

Abstract

Abstract The current work reports an efficient deep neural network (DNN) accelerator, where analog synaptic weight elements are controlled by ferroelectric (FE) domain dynamics. An integrated device-to-algorithm framework for benchmarking novel synaptic devices is used. In poly(vinylidene fluoride-trifluoroethylene)-based ferroelectric tunnel junctions (FTJs), analog conductance states are measured using a custom pulsing protocol, and associated control circuits and array architectures for DNN training are simulated. Our results show that precise control of polarization switching dynamics in multi-domain polycrystalline FE thin films can produce considerable weight-update linearity in metal–ferroelectric–semiconductor (MFS) tunnel junctions. Ultrafast switching and low junction currents in these devices offer extremely energy-efficient operation. Via an integrated platform of hardware development, characterization and modeling, we predict the available conductance range, where linearity is expected under identical potentiating and depressing pulses for efficient DNN training and inference tasks. As an example, an analog crossbar-based DNN accelerator with MFS junctions as synaptic weight elements showed >93% training accuracy on a large MNIST handwritten digit dataset while, for cropped images, >95% accuracy is achieved. One observed challenge is the rather limited dynamic conductance range while operating under identical potentiating and depressing pulses below 1 V. Investigation is underway to improve the FTJ dynamic conductance range, maintaining the weight-update linearity under an identical pulse scheme.

Funder

Academy of Finland

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3