Ternary Łukasiewicz logic using memristive devices

Author:

Bengel ChristopherORCID,Liu Feng,Chen Ziang,Zhao Xianyue,Waser Rainer,Schmidt Heidemarie,Du Nan,Menzel Stephan

Abstract

Abstract Memristive devices based on the Valence Change Mechanism (VCM) are promising devices for storage class memory, neuromorphic computing and logic-in-memory (LIM) applications. They are suited for such a wide range of applications, due to their possibility for extreme dense integration, low power consumption and multilevel capabilities. Through LIM concepts, Boolean logic operations can be performed directly in memory. In many of these concepts, the resistance state of the device is interpreted as the logical input and output of the logic function, which is why these concepts are called ‘stateful’ logic. Most of the proposed ideas, however, are defined based on only binary switching VCM devices and neglect their multi-level capabilities. Extending LIM concepts towards multinary logic, e.g. a ternary logic, would increase the data density inside the memory array and reduce the number of devices required to perform a certain operation. In this work, we discuss two possibilities of realizing a ternary logic based on the analog switching in the RESET or in the SET direction. For both directions we verify the logic functionality by showing the basic operations of implication, negation and false operation, which together form a functionally complete logic. Additionally, for both switching directions, we discuss a 41-Trit ( 64-Bit) addition. For all investigations the physics-based compact model JART VCM v1b is used, which has been verified on the RESET direction multilevel properties of the TaO x devices.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

IOP Publishing

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ternary Function Classification Using Machine Learning;2024 IEEE 54th International Symposium on Multiple-Valued Logic (ISMVL);2024-05-28

2. Realization of Reading-based Ternary Łukasiewicz Logic using Memristive Devices;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3