Reliability aspects of binary vector-matrix-multiplications using ReRAM devices

Author:

Bengel ChristopherORCID,Mohr JohannesORCID,Wiefels StefanORCID,Singh AbhairajORCID,Gebregiorgis AntenehORCID,Bishnoi RajendraORCID,Hamdioui SaidORCID,Waser RainerORCID,Wouters Dirk,Menzel StephanORCID

Abstract

Abstract Computation-in-memory using memristive devices is a promising approach to overcome the performance limitations of conventional computing architectures introduced by the von Neumann bottleneck which are also known as memory wall and power wall. It has been shown that accelerators based on memristive devices can deliver higher energy efficiencies and data throughputs when compared with conventional architectures. In the vast multitude of memristive devices, bipolar resistive switches based on the valence change mechanism (VCM) are particularly interesting due to their low power operation, non-volatility, high integration density and their CMOS compatibility. While a wide range of possible applications is considered, many of them such as artificial neural networks heavily rely on vector-matrix-multiplications (VMMs) as a mathematical operation. These VMMs are made up of large numbers of multiplication and accumulation (MAC) operations. The MAC operation can be realised using memristive devices in an analog fashion using Ohm’s law and Kirchhoff’s law. However, VCM devices exhibit a range of non-idealities, affecting the VMM performance, which in turn impacts the overall accuracy of the application. Those non-idealities can be classified into time-independent (programming variability) and time-dependent (read disturb and read noise). Additionally, peripheral circuits such as analog to digital converters can introduce errors during the digitalization. In this work, we experimentally and theoretically investigate the impact of device- and circuit-level effects on the VMM in a VCM crossbars. Our analysis shows that the variability of the low resistive state plays a key role and that reading in the RESET direction should be favored to reading in the SET direction.

Funder

H2020 European Research Council

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

IOP Publishing

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy-efficient Computation-In-Memory Architecture using Emerging Technologies;2023 International Conference on Microelectronics (ICM);2023-12-17

2. Reliability Aspects of 28 nm BEOL‐Integrated Resistive Switching Random Access Memory;physica status solidi (a);2023-11-03

3. Editorial: Focus issue on energy-efficient neuromorphic devices, systems and algorithms;Neuromorphic Computing and Engineering;2023-10-31

4. An Overview of Computation-in-Memory (CIM) Architectures;Design and Applications of Emerging Computer Systems;2023-08-17

5. Covalent Organic Frameworks for Neuromorphic Devices;The Journal of Physical Chemistry Letters;2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3