Abstract
Abstract
We propose a novel synaptic design of more efficient neuromorphic edge-computing with substantially improved linearity and extremely low variability. Specifically, a parallel arrangement of ferroelectric tunnel junctions (FTJ) with an incremental pulsing scheme provides a great improvement in linearity for synaptic weight updating by averaging weight update rates of multiple devices. To enable such design with FTJ building blocks, we have demonstrated the lowest reported variability: σ/μ = 0.036 for cycle to cycle and σ/μ = 0.032 for device among six dies across an 8 inch wafer. With such devices, we further show improved synaptic performance and pattern recognition accuracy through experiments combined with simulations.
Funder
Air Force Office of Scientific Research
Air Force Research Laboratory
Subject
Psychiatry and Mental health,Neuropsychology and Physiological Psychology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献