Binary operations on neuromorphic hardware with application to linear algebraic operations and stochastic equations

Author:

Iaroshenko Oleksandr,Sornborger Andrew TORCID,Chavez Arana Diego

Abstract

Abstract Non-von Neumann computational hardware, based on neuron-inspired, non-linear elements connected via linear, weighted synapses—so-called neuromorphic systems—is a viable computational substrate. Since neuromorphic systems have been shown to use less power than CPUs for many applications, they are of potential use in autonomous systems such as robots, drones, and satellites, for which power resources are at a premium. The power used by neuromorphic systems is approximately proportional to the number of spiking events produced by neurons on-chip. However, typical information encoding on these chips is in the form of firing rates that unarily encode information. That is, the number of spikes generated by a neuron is meant to be proportional to an encoded value used in a computation or algorithm. Unary encoding is less efficient (produces more spikes) than binary encoding. For this reason, here we present neuromorphic computational mechanisms for implementing binary two’s complement operations. We use the mechanisms to construct a neuromorphic, binary matrix multiplication algorithm that may be used as a primitive for linear differential equation integration, deep networks, and other standard calculations. We also construct a random walk circuit and apply it in Brownian motion simulations. We study how both algorithms scale in circuit size and iteration time.

Funder

Los Alamos National Laboratory

U.S. Department of Energy, Advanced Scientific Computing, Beyond Moore’s Law Program

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Arithmetic Primitives for Efficient Neuromorphic Computing;2023 IEEE International Conference on Rebooting Computing (ICRC);2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3