Efficient sparse spiking auto-encoder for reconstruction, denoising and classification

Author:

Walters BenORCID,Rahimian Kalatehbali Hamid,Cai Zhengyu,Genov Roman,Amirsoleimani Amirali,Eshraghian JasonORCID,Rahimi Azghadi MostafaORCID

Abstract

Abstract Auto-encoders are capable of performing input reconstruction, denoising, and classification through an encoder-decoder structure. Spiking Auto-Encoders (SAEs) can utilize asynchronous sparse spikes to improve power efficiency and processing latency on neuromorphic hardware. In our work, we propose an efficient SAE trained using only Spike-Timing-Dependant Plasticity (STDP) learning. Our auto-encoder uses the Time-To-First-Spike (TTFS) encoding scheme and needs to update all synaptic weights only once per input, promoting both training and inference efficiency due to the extreme sparsity. We showcase robust reconstruction performance on the Modified National Institute of Standards and Technology (MNIST) and Fashion-MNIST datasets with significantly fewer spikes compared to state-of-the-art SAEs by 1–3 orders of magnitude. Moreover, we achieve robust noise reduction results on the MNIST dataset. When the same noisy inputs are used for classification, accuracy degradation is reduced by 30%–80% compared to prior works. It also exhibits classification accuracies comparable to previous STDP-based classifiers, while remaining competitive with other backpropagation-based spiking classifiers that require global learning through gradients and significantly more spikes for encoding and classification of MNIST/Fashion-MNIST inputs. The presented results demonstrate a promising pathway towards building efficient sparse spiking auto-encoders with local learning, making them highly suited for hardware integration.

Publisher

IOP Publishing

Reference61 articles.

1. Self-supervised learning for medical image classification: a systematic review and implementation guidelines;Huang;npj Digit. Med.,2023

2. Fully spiking variational autoencoder;Kamata,2022

3. Denoising autoencoders for unsupervised anomaly detection in brain MRI;Kascenas,2022

4. Application of autoencoder to traffic noise analysis;Czyżewski;Proc. Meetings Acoust.,2019

5. Synthesizing images from spatio-temporal representations using spike-based backpropagation;Roy;Front. Neurosci.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3