Neuromorphic cytometry: implementation on cell counting and size estimation

Author:

Zhang Ziyao,Xu Zhangyu,McGuire Helen M,Essam ChipORCID,Nicholson Andrew,Hamilton Tara J,Li Jiayin,Eshraghian Jason K,Yong Ken-Tye,Vigolo DanieleORCID,Kavehei OmidORCID

Abstract

Abstract Imaging flow cytometry (FC) is a powerful analytic tool that combines the principles of conventional FC with rich spatial information, allowing more profound insight into single-cell analysis. However, offering such high-resolution, full-frame feedback can restrain processing speed and has become a significant trade-off during development. In addition, the dynamic range (DR) offered by conventional photosensors can only capture limited fluorescence signals, which compromises the detection of high-velocity fluorescent objects. Neuromorphic photo-sensing focuses on the events of interest via individual-firing pixels to reduce data redundancy and latency. With its inherent high DR, this architecture has the potential to drastically elevate the performance in throughput and sensitivity to fluorescent targets. Herein, we presented an early demonstration of neuromorphic cytometry, demonstrating the feasibility of adopting an event-based resolution in describing spatiotemporal feedback on microscale objects and for the first time, including cytometric-like functions in object counting and size estimation to measure 8 µm, 15 µm microparticles and human monocytic cell line (THP-1). Our work has achieved highly consistent outputs with a widely adopted flow cytometer (CytoFLEX) in detecting microparticles. Moreover, the capacity of an event-based photosensor in registering fluorescent signals was evaluated by recording 6 µm Fluorescein isothiocyanate-marked particles in different lighting conditions, revealing superior performance compared to a standard photosensor. Although the current platform cannot deliver multiparametric measurements on cells, future endeavours will include further functionalities and increase the measurement parameters (granularity, cell condition, fluorescence analysis) to enrich cell interpretation.

Publisher

IOP Publishing

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Reference23 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3