Cell detection with convolutional spiking neural network for neuromorphic cytometry

Author:

Zhang Ziyao1ORCID,Yang Haoxiang1ORCID,Eshraghian Jason K.2ORCID,Li Jiayin3ORCID,Yong Ken-Tye1ORCID,Vigolo Daniele4ORCID,McGuire Helen M.5ORCID,Kavehei Omid1ORCID

Affiliation:

1. School of Biomedical Engineering, The University of Sydney 1 , New South Wales, Australia

2. Department of Electrical and Computer Engineering, University of California 2 , San Diego, California 92161, USA

3. Faculty of Science, University of Technology Sydney 3 , New South Wales, Australia

4. The University of Sydney Nano Institute, The University of Sydney 4 , Sydney, New South Wales, Australia

5. School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney 5 , New South Wales, Australia

Abstract

Imaging flow cytometry (IFC) is an advanced cell-analytic technology offering rich spatial information and fluorescence intensity for multi-parametric characterization. Manual gating in cytometry data enables the classification of discrete populations from the sample based on extracted features. However, this expert-driven technique can be subjective and laborious, often presenting challenges in reproducibility and being inherently limited to bivariate analysis. Numerous AI-driven cell classifications have recently emerged to automate the process of including multivariate data with enhanced reproducibility and accuracy. Our previous work demonstrated the early development of neuromorphic imaging cytometry, evaluating its feasibility in resolving conventional frame-based imaging systems’ limitations in data redundancy, fluorescence sensitivity, and compromised throughput. Herein, we adopted a convolutional spiking neural network (SNN) combined with the YOLOv3 model (SNN-YOLO) to perform cell classification and detection on label-free samples under neuromorphic vision. Spiking techniques are inherently suitable post-processing techniques for neuromorphic vision sensing. The experiment was conducted with polystyrene-based microparticles, THP-1, and LL/2 cell lines. The network’s performance was compared with that of a traditional YOLOv3 model fed with event-generated frame data to serve as a baseline. In this work, our SNN-YOLO outperformed the YOLOv3 baseline by achieving the highest average class accuracy of 0.974, compared to 0.962 for YOLOv3. Both models reported comparable performances across other key metrics and should be further explored for future auto-gating strategies and cytometry applications.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3