Enhanced synaptic characteristics of H x WO3-based neuromorphic devices, achieved by current pulse control, for artificial neural networks

Author:

Nishioka DaikiORCID,Tsuchiya TakashiORCID,Higuchi Tohru,Terabe Kazuya

Abstract

Abstract Artificial synapses capable of mimicking the fundamental functionalities of biological synapses are critical to the building of efficient neuromorphic systems. We have developed a H x WO3-based artificial synapse that replicates such synaptic functionalities via an all-solid-state redox transistor mechanism. The subject synaptic-H x WO3 transistor, which operates by current pulse control, exhibits excellent synaptic properties including good linearity, low update variation and conductance modulation characteristics. We investigated the performance of the device under various operating conditions, and the impact of the characteristics of the device on artificial neural network computing. Although the subject synaptic-H x WO3 transistor showed an insufficient recognition accuracy of 66% for a handwritten digit recognition task with voltage pulse control, it achieved an excellent accuracy of 88% with current pulse control, which is approaching the 93% accuracy of an ideal synaptic device. This result suggests that the performance of any redox-transistor-type artificial synapse can be dramatically improved by current pulse control, which in turn paves the way for further exploration and the evolution of advanced neuromorphic systems, with the potential to revolutionize the artificial intelligence domain. It further marks a significant stride towards the realization of high-performance, low-power consumption computing devices.

Funder

The Iketani Science and Technology Foundation

KAKENHI

Publisher

IOP Publishing

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3