A mixed-signal oscillatory neural network for scalable analog computations in phase domain

Author:

Delacour CorentinORCID,Carapezzi StefaniaORCID,Boschetto GabrieleORCID,Abernot MadeleineORCID,Gil Thierry,Azemard Nadine,Todri-Sanial AidaORCID

Abstract

Abstract Digital electronics based on von Neumann’s architecture is reaching its limits to solve large-scale problems essentially due to the memory fetching. Instead, recent efforts to bring the memory near the computation have enabled highly parallel computations at low energy costs. Oscillatory neural network (ONN) is one example of in-memory analog computing paradigm consisting of coupled oscillating neurons. When implemented in hardware, ONNs naturally perform gradient descent of an energy landscape which makes them particularly suited for solving optimization problems. Although the ONN computational capability and its link with the Ising model are known for decades, implementing a large-scale ONN remains difficult. Beyond the oscillators’ variations, there are still design challenges such as having compact, programmable synapses and a modular architecture for solving large problem instances. In this paper, we propose a mixed-signal architecture named Saturated Kuramoto ONN (SKONN) that leverages both analog and digital domains for efficient ONN hardware implementation. SKONN computes in the analog phase domain while propagating the information digitally to facilitate scaling up the ONN size. SKONN’s separation between computation and propagation enhances the robustness and enables a feed-forward phase propagation that is showcased for the first time. Moreover, the SKONN architecture leads to unique binarizing dynamics that are particularly suitable for solving NP-hard combinatorial optimization problems such as finding the weighted Max-cut of a graph. We find that SKONN’s accuracy is as good as the Goemans–Williamson 0.878-approximation algorithm for Max-cut; whereas SKONN’s computation time only grows logarithmically. We report on Weighted Max-cut experiments using a 9-neuron SKONN proof-of-concept on a printed circuit board (PCB). Finally, we present a low-power 16-neuron SKONN integrated circuit and illustrate SKONN’s feed-forward ability while computing the XOR function.

Funder

EU H2020 NEURONN

Publisher

IOP Publishing

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy-Efficient Machine Learning Acceleration: From Technologies to Circuits and Systems;2023 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED);2023-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3