Improved time complexity for spintronic oscillator ising machines compared to a popular classical optimization algorithm for the Max-Cut problem

Author:

Garg Neha,Singhal Sanyam,Aggarwal NakulORCID,Sadashiva Aniket,Muduli Pranaba K,Bhowmik DebanjanORCID

Abstract

Abstract Solving certain combinatorial optimization problems like Max-Cut becomes challenging once the graph size and edge connectivity increase beyond a threshold, with brute-force algorithms which solve such problems exactly on conventional digital computers having the bottleneck of exponential time complexity. Hence currently, such problems are instead solved approximately using algorithms like Goemans–Williamson (GW) algorithm, run on conventional computers with polynomial time complexity. Phase binarized oscillators (PBOs), also often known as oscillator Ising machines, have been proposed as an alternative to solve such problems. In this paper, restricting ourselves to the combinatorial optimization problem Max-Cut solved on three kinds of graphs (Mobius Ladder, random cubic, Erdös Rényi) up to 100 nodes, we empirically show that computation time/time to solution (TTS) for PBOs (captured through Kuramoto model) grows at a much lower rate (logarithmically: O ( log ( N ) ), with respect to graph size N) compared to GW algorithm, for which TTS increases as square of graph size ( O (N 2)). However, Kuramoto model being a physics-agnostic mathematical model, this time complexity/ TTS trend for PBOs is a general trend and is device-physics agnostic. So for more specific results, we choose spintronic oscillators, known for their high operating frequency (in GHz), and model them through Slavin’s model which captures the physics of their coupled magnetization oscillation dynamics. We thereby empirically show that TTS of spintronic oscillators also grows logarithmically with graph size ( O ( log ( N ) ), while their accuracy is comparable to that of GW. So spintronic oscillators have improved time complexity over GW algorithm. For large graphs, they are expected to compute Max-Cut values much faster than GW algorithm, as well as other oscillators operating at lower frequencies, while maintaining the same level of accuracy.

Funder

Ministry of Education (MoE) India

Science and Engineering Research Board India

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3