Modularity and multitasking in neuro-memristive reservoir networks

Author:

Loeffler AlonORCID,Zhu Ruomin,Hochstetter JoelORCID,Diaz-Alvarez AdrianORCID,Nakayama TomonobuORCID,Shine James MORCID,Kuncic ZdenkaORCID

Abstract

Abstract The human brain seemingly effortlessly performs multiple concurrent and elaborate tasks in response to complex, dynamic sensory input from our environment. This capability has been attributed to the highly modular structure of the brain, enabling specific task assignment among different regions and limiting interference between them. Here, we compare the structure and functional capabilities of different bio-physically inspired and biological networks. We then focus on the influence of topological properties on the functional performance of highly modular, bio-physically inspired neuro-memristive nanowire networks (NWNs). We perform two benchmark reservoir computing tasks (memory capacity and nonlinear transformation) on simulated networks and show that while random networks outperform NWNs on independent tasks, NWNs with highly segregated modules achieve the best performance on simultaneous tasks. Conversely, networks that share too many resources, such as networks with random structure, perform poorly in multitasking. Overall, our results show that structural properties such as modularity play a critical role in trafficking information flow, preventing information from spreading indiscriminately throughout NWNs.

Publisher

IOP Publishing

Subject

General Medicine

Reference71 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3