Abstract
Abstract
Networks composed of nanoscale memristive components, such as nanowire and nanoparticle networks, have recently received considerable attention because of their potential use as neuromorphic devices. In this study, we explore ergodicity in memristive networks, showing that the performance on machine leaning tasks improves when these networks are tuned to operate at the edge between two global stability points. We find this lack of ergodicity is associated with the emergence of memory in the system. We measure the level of ergodicity using the Thirumalai-Mountain metric, and we show that in the absence of ergodicity, two different memristive network systems show improved performance when utilized as reservoir computers (RC). We highlight that it is also important to let the system synchronize to the input signal in order for the performance of the RC to exhibit improvements over the baseline.
Funder
Vice-chancellor's research fellowship, RMIT University
Los Alamos National Laboratory
Postgraduate Research Excellence Award scholarship, University of Sydney
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献