Abstract
Abstract
Model predictive control (MPC) is a prominent control paradigm providing accurate state prediction and subsequent control actions for intricate dynamical systems with applications ranging from autonomous driving to star tracking. However, there is an apparent discrepancy between the model’s mathematical description and its behavior in real-world conditions, affecting its performance in real-time. In this work, we propose a novel neuromorphic (brain-inspired) spiking neural network for continuous adaptive non-linear MPC. Utilizing real-time learning, our design significantly reduces dynamic error and augments model accuracy, while simultaneously addressing unforeseen situations. We evaluated our framework using real-world scenarios in autonomous driving, implemented in a physics-driven simulation. We tested our design with various vehicles (from a Tesla Model 3 to an Ambulance) experiencing malfunctioning and swift steering scenarios. We demonstrate significant improvements in dynamic error rate compared with traditional MPC implementation with up to 89.15% median prediction error reduction with 5 spiking neurons and up to 96.08% with 5,000 neurons. Our results may pave the way for novel applications in real-time control and stimulate further studies in the adaptive control realm with spiking neural networks.
Funder
Open University of Israel
Reference31 articles.
1. Model predictive robot-environment interaction control for mobile manipulation tasks;Vittoria Minniti,2021
2. Policy search for model predictive control with application to agile drone flight;Song;IEEE Trans. Robot.,2022
3. Model predictive control in aerospace systems: Current state and opportunities;Eren;J. Guid. Control Dyn.,2017
4. Model predictive control of energy storage including uncertain forecasts;Arnold,2011
5. Dynamic tube MPC for nonlinear systems;Lopez,2019
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献