Continuous adaptive nonlinear model predictive control using spiking neural networks and real-time learning

Author:

Halaly Raz,Tsur Elishai EzraORCID

Abstract

Abstract Model predictive control (MPC) is a prominent control paradigm providing accurate state prediction and subsequent control actions for intricate dynamical systems with applications ranging from autonomous driving to star tracking. However, there is an apparent discrepancy between the model’s mathematical description and its behavior in real-world conditions, affecting its performance in real-time. In this work, we propose a novel neuromorphic (brain-inspired) spiking neural network for continuous adaptive non-linear MPC. Utilizing real-time learning, our design significantly reduces dynamic error and augments model accuracy, while simultaneously addressing unforeseen situations. We evaluated our framework using real-world scenarios in autonomous driving, implemented in a physics-driven simulation. We tested our design with various vehicles (from a Tesla Model 3 to an Ambulance) experiencing malfunctioning and swift steering scenarios. We demonstrate significant improvements in dynamic error rate compared with traditional MPC implementation with up to 89.15% median prediction error reduction with 5 spiking neurons and up to 96.08% with 5,000 neurons. Our results may pave the way for novel applications in real-time control and stimulate further studies in the adaptive control realm with spiking neural networks.

Funder

Open University of Israel

Publisher

IOP Publishing

Reference31 articles.

1. Model predictive robot-environment interaction control for mobile manipulation tasks;Vittoria Minniti,2021

2. Policy search for model predictive control with application to agile drone flight;Song;IEEE Trans. Robot.,2022

3. Model predictive control in aerospace systems: Current state and opportunities;Eren;J. Guid. Control Dyn.,2017

4. Model predictive control of energy storage including uncertain forecasts;Arnold,2011

5. Dynamic tube MPC for nonlinear systems;Lopez,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3