Hadamard product-based in-memory computing design for floating point neural network training

Author:

Fan Anjunyi,Fu Yihan,Tao Yaoyu,Jin Zhonghua,Han Haiyue,Liu Huiyu,Zhang Yaojun,Yan BonanORCID,Yang YuchaoORCID,Huang Ru

Abstract

Abstract Deep neural networks (DNNs) are one of the key fields of machine learning. It requires considerable computational resources for cognitive tasks. As a novel technology to perform computing inside/near memory units, in-memory computing (IMC) significantly improves computing efficiency by reducing the need for repetitive data transfer between the processing and memory units. However, prior IMC designs mainly focus on the acceleration for DNN inference. DNN training with the IMC hardware has rarely been proposed. The challenges lie in the requirement of DNN training for high precision (e.g. floating point (FP)) and various operations of tensors (e.g. inner and outer products). These challenges call for the IMC design with new features. This paper proposes a novel Hadamard product-based IMC design for FP DNN training. Our design consists of multiple compartments, which are the basic units for the matrix element-wise processing. We also develop BFloat16 post-processing circuits and fused adder trees, laying the foundation for IMC FP processing. Based on the proposed circuit scheme, we reformulate the back-propagation training algorithm for the convenience and efficiency of the IMC execution. The proposed design is implemented with commercial 28 nm technology process design kits and benchmarked with widely used neural networks. We model the influence of the circuit structural design parameters and provide an analysis framework for design space exploration. Our simulation validates that MobileNet training with the proposed IMC scheme saves 91.2 % in energy and 13.9 % in time versus the same task with NVIDIA GTX 3060 GPU. The proposed IMC design has a data density of 769.2 Kb mm−2 with the FP processing circuits included, showing a 3.5 × improvement than the prior FP IMC designs.

Funder

PKU-Baidu Fund

The 111 Project

Tencent Foundation through the XPLORER PRIZE

National Natural Science Foundation of China

Fok Ying-Tong Education Foundation

Publisher

IOP Publishing

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Reference61 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial: Focus issue on in-memory computing;Neuromorphic Computing and Engineering;2024-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3