Fabrication and calibration of nanostructured vanadium-doped ZnO-based micromachined sensor with superior sensitive for underwater acoustic measurement

Author:

Gao WeiORCID,Zhang Yu,Ma Binghe,Luo Jian,Deng JinjunORCID

Abstract

Abstract A high-performance micromachined piezoelectric sensor based nanostructured vanadium-doped zinc oxide (ZnO) film with air-backing has been developed and characterized for underwater acoustic application. The sensing cell with a low foot-print of 2.0 mm × 2.0 mm is fabricated by Micro electro mechanical systems (MEMS) technology using a ZnO-on-silicon-on-insulator process platform. An optimal ratio of piezoelectric coefficient to the relative permittivity is obtained about 6.3 in the Zn0.98V0.02O sensing cell, improving by an order of magnitude compared with other notable piezoelectric films, plays a mainly dominant role in the enhanced piezoelectric response. Calibrations in the standard underwater instrument have demonstrated that the presented sensor could achieve an acoustic pressure sensitivity of −165 ± 2 dB (1 V μPa−1) over a bandwidth 10 Hz–10 kHz, outperforming the same kind of reported devices. The maximum non-linearity is no more than 0.3%, the sensitivity variation is no more than ±0.7 dB in the temperature range from 10 °C to 50 °C, indicating a better stability and higher reliability. The proposed sensor with a superior acoustic sensitivity gives a great application potential in underwater acoustic measurements.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3