Study of notched MEMS specimen: elasto-plastic modeling and experimental testing

Author:

Somà AurelioORCID,Pistorio Francesca,Mubasher Saleem Muhammad

Abstract

Abstract This paper investigates the effect of stress and strains concentration, due to the notch presence, on the elasto-plastic behavior of gold microstructures subjected to tensile loading under electrostatic actuation. A kinematic model for the test microstructure which relates the experimentally measured deflection to the induced stress in the central specimen with applied electrostatic load is developed. The local maximum stress and strains at the notch root are analytically estimated using the Neuber’s rule and verified through a detailed non-linear coupled-field electric-structural finite element method (FEM)-based analysis. Several experimental tests are carried out to analyze the accumulation of plastic strain and the consequent development of plastic hinges induced in the central notched specimen due to repeated cyclic tensile loading by measuring the corresponding deflection with each loading cycle. The comparison between the failure condition observed experimentally in the test notched specimens and the FEM-based simulation results shows that the notch acts as stress and strains raiser fostering the initiation and expansion of plastic hinges in the thin film gold specimen which can lead to the specimen breakdown.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3