One-to-two internal resonance in a micro-mechanical resonator with strong Duffing nonlinearity

Author:

Yu Jun,Donmez AtaORCID,Herath HansajaORCID,Cho HannaORCID

Abstract

Abstract This paper investigates the implementation of 1:2 internal resonance (InRes) in a clamped–clamped stepped beam resonator with a strong Duffing effect, focusing on its potential for frequency stabilization in micro-electro-mechanical systems (MEMS) resonators. InRes can arise in a nonlinear system of which mode frequencies are close to an integer ratio, facilitating the internal exchange of energy from an externally driven mode to an undriven mode. The presence of 1:2 InRes and Duffing hardening nonlinearity can result in frequency saturation phenomena, leading to a flat amplitude-frequency response range, which forms the basis for frequency stabilization. The stepped beam resonator design, combined with thermal frequency tuning, enables precise alteration of the frequency ratio between the second and third flexural modes required to achieve the desired 1:2 ratio for InRes. Experimental characterization and theoretical analysis revealed that frequency mismatch plays a significant role, with larger mismatch conditions leading to stronger energy exchange and a wider range of drive force for frequency saturation. The study highlights the frequency saturation mechanism utilizing 1:2 InRes and emphasizes the advantage of Duffing nonlinearity and larger intermodal frequency mismatch for broader frequency stabilization, providing valuable insights for the design and optimization of MEMS resonators.

Funder

Defense Advanced Research Projects Agency

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3