Abstract
Abstract
Direction and analog deflection control, as well as low voltage digital switching are the most desirable attributes in electrostatic actuators for current MEMS applications. In this work we show how internal dielectric transduction can be used to reduce pull-in voltages without reducing the air gap, and to effect bi-directional actuation. The actuator is a metal–dielectric–metal sandwich. For hybrid actuation to achieve reduced pull-in, the device has a thick bottom metal and a thin top metal, while for the upward actuator the device has a thick top metal and a thin bottom metal. An out-of-plane deflection of 108 nm is achieved using 5 V applied voltage for the upward actuator, while the hybrid actuator shows over 50% reduction in pull-in voltage from 1.26 V to 0.62 V.
Funder
Science and Engineering Research Board
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials