Research on dynamics of bouncing ball in triboelectric nanogenerator

Author:

Huang ChaomingORCID,Li Qingtao,Li Jie,Guo Huize,Hao Wenhan,Sheng Kexin,An Yunsheng,Chen Jiayi,Zhang Xinyi,Xu MinyiORCID

Abstract

Abstract Bouncing ball based Triboelectric Nanogenerator (BB-TENG) can be used to harvest vibrational energy and sense signal for self-powered sensor in the non-resonant zone because of its non-spring vibration system. The energy harvesting efficiency and sensing effectiveness are significantly affected by the dynamics of the bouncing ball. However, due to the chaotic and nonlinear mechanics, the dynamics of the bouncing ball inside BB-TENG and the corresponding influencing factors have not yet been revealed, which restricts the development of high-efficiency BB-TENG. In this work a method based on dynamics simulation and test bench experiment is to be proposed and the ‘Takeoff’, ‘Well-Contact’, ‘Self-Spin’, and ‘Rich-Contact’ of the bouncing ball with the plate electrodes will be investigated. The kinetic model established based on the Automatic Dynamic Analysis of Mechanical Systems (ADAMSs) is verified through experiments to confirm the reliability of the simulation results. It is found that ‘Well-Contact’ of the bouncing ball makes BB-TENG harvest energy efficiently. The factors for ‘Well-Contact’ and their influence are investigated, and the critical frequencies for ‘Well-Contact’ of the bouncing ball at each vibration excitation amplitude are obtained. ‘Self-Spin’ of the bouncing ball produced by unbalanced excitation torque is found to increase energy harvesting, and the excitation frequency significantly determines the energy of the ‘Self-Spin’. When the external excitation acceleration reaches a critical value, the ‘Rich-Contact’ of the bouncing ball is found, and the amount of charge transfer for BB-TENG will not increase, which is termed saturated condition. Therefore, the results of this work help improve the design and application of high-efficiency BB-TENG.

Funder

Research Funds for the Central Universities

National Natural Science Foundation of China

Projects for Dalian Youth Star of Science and Technology

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3