Research on fabrication method for floating structures using general photolithography with high versatility

Author:

Horade MORCID,Yamada K,Yamawaki T,Yashima M

Abstract

Abstract This research reports a micro-fabrication method for plastic microscale structures. Although a stepped shape, such as a cantilever, can be fabricated by micro electro mechanical systems (MEMS) deep etching technology, its disadvantages include the complicated fabrication process and its limited utilization with silicon only. Therefore, in this study, with an aim to address the aforementioned problems, we have realized the fabrication of a multi-stage structure using just a general photolithography process with high versatility. Specifically, it can be manufactured using only SU-8 resist and AZ resist, which are often used in the MEMS process. The AZ resist has the advantage of dissolving in the developer of the SU-8 resist, whether exposed or non-exposed. Thus, the sacrificial layer of AZ resist can be implemented with the SU-8 developer, thereby eliminating the need for dangerous chemicals such as hydrofluoric acid, which is used to etch silicon oxide. Herein, we have derived the optimum conditions by considering in advance the thickness of the AZ resist, the time taken to be etched in SU-8, and the desired features. Based on these optimum processing conditions, the structure could be suspended only in the region where the hole array was patterned. Although methods of using AZ resist as a sacrificial layer and floating SU-8 have been reported, in this study, both floating and fixed structures could be simultaneously fabricated by photolithography only. Accordingly, we successfully manufactured a gear structure and a MEMS sensor, both of which have floating and fixed structures. The above structures are made of highly transparent SU-8 on a glass substrate; hence, they are easily observable with a microscope. The reason for the widespread use of polydimethylsiloxane micro-channels is that they are transparent materials that can be observed under a microscope and fabricated by simple photolithography of the SU-8 resist, enabling non-microfabrication specialists to enter this field. These findings have the potential to form the foundation for developing new biochemical tests, such as actuators and sensors driven under a microscope.

Funder

JKA Foundation

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3