Effects of rolled fibrous microstructure on fatigue properties of extruded Cu-5Al planar micro springs

Author:

Li F Y,Wang X B,Ma S J,Dong X H,Zhang X PORCID

Abstract

Abstract Planar micro spring is an important elastic component in microelectromechanical system devices, and one of its main failures is fatigue. In this work, a new method to improve the cycles of a planar micro spring by introducing pre-rolled fibrous microstructure was proposed. Cu-5Al alloy billets with a fibrous microstructure rolled at room temperature with a reduction ratio of 70% were obtained. Three types of planar micro springs with fibrous microstructure were prepared through extrusion by varying the angle between the fibrous microstructure direction and the extrusion direction. Fatigue tests were conducted using a customized micro-fatigue test system. The best fatigue performance was obtained by preparing the micro springs with the fibrous microstructure direction perpendicular to the extrusion direction, while the worst fatigue performance was obtained by preparing the planar micro springs with the fibrous microstructure direction parallel to the extrusion direction. The fibrous microstructure direction affected the local strain in the micro springs. The fibrous microstructure slightly affected the location of the crack initiation region but significantly affected the area of crack initiation and steady-state expansion region of the micro spring. The fatigue life cycle of extruded Cu-5Al alloy planar micro spring with the pre-rolled fibrous microstructure improved by 58% more than that of extruded Cu-7Al alloy planar micro spring without the pre-rolled fibrous microstructure. Micro spring fatigue life cycle decreased with increasing strain amplitude. This work provides a new approach for preparing planar micro springs with high fatigue performance.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3