Stability for the Calderón’s problem for a class of anisotropic conductivities via an ad hoc misfit functional

Author:

Foschiatti SoniaORCID,Gaburro RominaORCID,Sincich EvaORCID

Abstract

Abstract We address the stability issue in Calderón’s problem for a special class of anisotropic conductivities of the form σ = γA in a Lipschitz domain Ω R n , n ⩾ 3, where A is a known Lipschitz continuous matrix-valued function and γ is the unknown piecewise affine scalar function on a given partition of Ω. We define an ad hoc misfit functional encoding our data and establish stability estimates for this class of anisotropic conductivity in terms of both the misfit functional and the more commonly used local Dirichlet-to-Neumann map.

Funder

Progetto di Rilevante Interesse Nazionale

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Reference63 articles.

1. Stable determination of conductivity by boundary measurements;Alessandrini;Appl. Anal.,1988

2. Singular solutions of elliptic equations and the determination of conductivity by boundary measurements;Alessandrini;J. Differ. Equ.,1990

3. Optimal stability for inverse elliptic boundary value problems with unknown boundaries;Alessandrini;Ann. Scuola Norm. Sup. Pisa, Cl. Sci.,2000

4. Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities;Alessandrini;Inverse Problems,2017

5. Determining conductivity with special anisotropy by boundary measurements;Alessandrini;SIAM J. Math. Anal.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3