A probabilistic framework for uncertainty quantification in positron emission particle tracking

Author:

Offner AvshalomORCID,Manger SamORCID,Vanneste JacquesORCID

Abstract

Abstract Positron emission particle tracking (PEPT) is an imaging method for the visualization of fluid motion, capable of reconstructing three-dimensional trajectories of small tracer particles suspended in nearly any medium, including fluids that are opaque or contained within opaque vessels. The particles are labeled radioactively, and their positions are reconstructed from the detection of pairs of back-to-back photons emitted by positron annihilation. Current reconstruction algorithms are heuristic and typically based on minimizing the distance between the particles and the so-called lines of response (LoRs) joining the detection points, while accounting for spurious LoRs generated by scattering. Here we develop a probabilistic framework for the Bayesian inference and uncertainty quantification of particle positions from PEPT data. We formulate a likelihood by describing the emission of photons and their noisy detection as a Poisson process in the space of LoRs. We derive formulas for the corresponding Poisson rate in the case of cylindrical detectors, accounting for both undetected and scattered photons. We illustrate the formulation by quantifying the uncertainty in the reconstruction of the position of a single particle on a circular path from data generated by state-of-the-art Monte Carlo simulations. The results show how the observation time Δ t can be chosen optimally to balance the need for a large number of LoRs with the requirement of small particle displacement imposed by the assumption that the particle is static over Δ t . We further show how this assumption can be relaxed by inferring jointly the position and velocity of the particle, with clear benefits for the accuracy of the reconstruction.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3