On the Ability of Positron Emission Particle Tracking (PEPT) to Track Turbulent Flow Paths with Monte Carlo Simulations in GATE

Author:

Perin Rayhaan1ORCID,Cole Katie1ORCID,van Heerden Michael R.12ORCID,Buffler Andy1,Lin Yi-Yu3ORCID,Zhang Jiahao3,Brito-Parada Pablo R.3ORCID,Shock Jonathan1ORCID,Peterson Stephen W.1ORCID

Affiliation:

1. Department of Physics, University of Cape Town, Rondebosch 7701, South Africa

2. iThemba LABS, Cape Town 7129, South Africa

3. Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK

Abstract

Positron emission particle tracking (PEPT) has offered important insights into the internal dynamics of multiphase flows. High precision and frequency measurements of the location of the tracer particle are required to resolve individual eddies at the millimetre scale or smaller. To explore the potential of PEPT to perform these measurements, a model was developed of the Siemens ECAT “EXACT3D” HR++ positron emission tomography (PET) scanner at the PEPT Cape Town facility in South Africa with the software Geant4 Application for Tomographic Emission (GATE) and was used to generate Lagrangian tracks from simulations of moving tracer particles. The model was validated with measurements from both experiment and simulation and was extended to two virtual scenarios inspired by turbulent flows. The location data from the simulation accurately captured linear portions of an oscillating path up to high speeds of 25 m s−1; however, tracking tended to undercut the turning points due to the high tracer acceleration. For a particle moving on a spiral path of decreasing radius, the location data tracked the path above a radius of 2.0 mm with an uncertainty equivalent to the radius of the tracer particle, 300 μm. Improvements to the measurement are required to track sub-millimetre flow structures, such as the application of PET scanners with higher spatial resolution and upgrades to the sampling processes used in location algorithms.

Funder

University Research Council at the University of Cape Town

National Research Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3