Adaptive regularisation for ensemble Kalman inversion

Author:

Iglesias MarcoORCID,Yang Yuchen

Abstract

Abstract We propose a new regularisation strategy for the classical ensemble Kalman inversion (EKI) framework. The strategy consists of: (i) an adaptive choice for the regularisation parameter in the update formula in EKI, and (ii) criteria for the early stopping of the scheme. In contrast to existing approaches, our parameter choice does not rely on additional tuning parameters which often have severe effects on the efficiency of EKI. We motivate our approach using the interpretation of EKI as a Gaussian approximation in the Bayesian tempering setting for inverse problems. We show that our parameter choice controls the symmetrised Kullback–Leibler divergence between consecutive tempering measures. We further motivate our choice using a heuristic statistical discrepancy principle. We test our framework using electrical impedance tomography with the complete electrode model. Parameterisations of the unknown conductivity are employed which enable us to characterise both smooth or a discontinuous (piecewise-constant) fields. We show numerically that the proposed regularisation of EKI can produce efficient, robust and accurate estimates, even for the discontinuous case which tends to require larger ensembles and more iterations to converge. We compare the proposed technique with a standard method of choice and demonstrate that the proposed method is a viable choice to address computational efficiency of EKI in practical/operational settings.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Reference55 articles.

1. Ensemble Kalman methods for inverse problems;Iglesias;Inverse Problems,2013

2. A regularizing iterative ensemble Kalman method for PDE-constrained inverse problems;Iglesias;Inverse Problems,2016

3. Parameterizations for ensemble Kalman inversion;Chada;Inverse Problems,2018

4. Tikhonov regularization within ensemble Kalman inversion;Chada,2019

5. Convergence acceleration of ensemble Kalman inversion in nonlinear settings;Chada,2019

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3