A probabilistic approach to tomography and adjoint state methods, with an application to full waveform inversion in medical ultrasound

Author:

Bates OscarORCID,Guasch LluisORCID,Strong GeorgeORCID,Caradoc Robins ThomasORCID,Calderon-Agudo OscarORCID,Cueto CarlosORCID,Cudeiro JavierORCID,Tang MengxingORCID

Abstract

Abstract Bayesian methods are a popular research direction for inverse problems. There are a variety of techniques available to solve Bayes’ equation, each with their own strengths and limitations. Here, we discuss stochastic variational inference (SVI), which solves Bayes’ equation using gradient-based methods. This is important for applications which are time-limited (e.g. medical tomography) or where solving the forward problem is expensive (e.g. adjoint methods). To evaluate the use of SVI in both these contexts, we apply it to ultrasound tomography of the brain using full-waveform inversion (FWI). FWI is a computationally expensive adjoint method for solving the ultrasound tomography inverse problem, and we demonstrate that SVI can be used to find a no-cost estimate of the pixel-wise variance of the sound-speed distribution using a mean-field Gaussian approximation. In other words, we show experimentally that it is possible to estimate the pixel-wise uncertainty of the sound-speed reconstruction using SVI and a common approximation which is already implicit in other types of iterative reconstruction. Uncertainty estimates have a variety of uses in adjoint methods and tomography. As an illustrative example, we focus on the use of uncertainty for image quality assessment. This application is not limiting; our variance estimator has effectively no computational cost and we expect that it will have applications in fields such as non-destructive testing or aircraft component design where uncertainties may not be routinely estimated.

Funder

Engineering and Physical Sciences Research Council

Wellcome Trust

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3