Time-resolved reversible optical switching of the ultralow-loss phase change material Sb2Se3

Author:

Lawson DanielORCID,Hewak Daniel W,Muskens Otto LORCID,Zeimpekis IoannisORCID

Abstract

Abstract The antimony-based chalcogenide Sb2Se3 is a rapidly emerging material for photonic phase change applications owing to its ultra-low optical losses at telecommunication wavelengths in both crystalline and amorphous phases. Here, we investigate the dynamical response of these materials from nanoseconds to milliseconds under optical pumping conditions. We apply bichromatic pump-probe transient reflectance spectroscopy which is a widely used method to study the optical performance of optical phase change materials during phase transitions induced by direct pulsed optical switching. Amorphous regions of several hundreds of nanometers in diameter are induced by pulsed excitation of the material using a wavelength of 488 nm above the absorption edge, while the transient reflectance is probed using a continuous wave 980 nm laser, well below the absorption edge of the material. We find vitrification dynamics in the nanosecond range and observe crystallization on millisecond time scales. These results show a large five-orders of magnitude difference in time scales between crystallization and vitrification dynamics in this material. The insights provided in this work are fundamental for the optimisation of the material family and its employment in photonic applications.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3