Facile synthesis of Veitchia merilli coir-based porous carbon using combined chemical and physical activation routes as electrode material for energy storage

Author:

Farma R,Anugrah A P,Apriyani I,Awitdrus A

Abstract

Abstract This study aimed to prepare Veitchia merilli coir (VMC) through pre-carbonisation process, followed by chemical activation using potassium hydroxide as an activating agent. The experiment was conducted under different pyrolytic physical activation temperatures of 650, 700, and 750 °C with the code VMS-650, VMS-700, and VMS-750 for each sample. Physical activation methods develop or modify the pore structure, specific surface area, and microstructure of activated carbon. Furthermore, the prepared VMCs were characterised using X-ray diffraction, Fourier transform infrared, scanning electron microscope, energy dispersive X-ray, and cyclic voltammetry with a symmetrical two-electrode system in 1 M H2SO4 solution. The microstructure analysis showed that the VMC carbon electrode has an amorphous structure with two broad peaks at 2θ angles around 26° and 44° corresponding to the (002) and (100) planes, with the L c VMS-700 having a value of 16.007 nm. The VMC electrode has a C≡C carbon bond as a functional group, which extends in bands from 2311.79 to 2373.51 cm−1. Meanwhile, the VMS-700 electrode shows a combined surface morphology of nanofibers as well as mesopores, and the energy dispersive X-ray results showed carbon content of 92.83%. The electrochemical properties of supercapacitor cells indicated this electrode had the highest specific capacitance value of 264.2 F g−1. From the obtained results, the respective physical and electrochemical properties of the carbon electrodes and supercapacitor cells showed that the activated VMC-700 at 700 °C is the optimum temperature to produce the best performance compared to 650 and 750 °C.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3