Preparation and Application of a Magnetic Oxidized Micro/Mesoporous Carbon with Efficient Adsorption for Cu(II) and Pb(II)

Author:

Qu Jia,Huang Hongpu,Yang Qiang,Gong Wei,Li Meilan,Chang Liangliang,Cao Baoyue,Zhang Guochun,Zhou Chunsheng

Abstract

Water pollution is a worldwide problem that requires urgent attention and prevention and exceeding use of heavy-metal ions is one of the most harmful factors, which poses a serious threat to human health and the ecological environment. In this work, a magnetic oxidized micro/mesoporous carbon (MOMMC) was prepared for the easy separation of Cu(II) and Pb(II) from water. The dual-template method was used to prepare micro/mesoporous carbon using sucrose as the carbon source, silica nanoparticles formed by tetraethyl orthosilicate as the microporous templates, and triblock copolymer F127 as the mesoporous template. MOMMC was obtained by oxidation using potassium persulfate and then magnetized through in situ synthesis of Fe3O4 nanoparticles. FTIR, TG-DSC, XRD, TEM, SEM, nitrogen adsorption–desorption isotherms, zeta potential, and VSM were used to confirm the synthetic process, structure, and basic properties of MOMMC. The high-saturation magnetization (59.6 emu·g−1) of MOMMC indicated its easy and fast separation from water by an external magnetic field. Kinetics studies showed that the adsorption of Cu(II) and Pb(II) on MOMMC fit the pseudo-second-order model well. Isotherm studies showed that the adsorption behavior of Cu(II) was better described by the Langmuir model, and the adsorption behavior of Pb(II) was better described by both Langmuir and Redlich–Peterson models. MOMMC obtained efficient adsorption for Cu(II) and Pb(II) with the large adsorption capacity of 877.19 and 943.40 mg·g−1 according to the Langmuir adsorption isotherm equation, and a better selectivity for Pb(II) was observed in competitive adsorption. MOMMC still possessed a large adsorption capacity for Cu(II) and Pb(II) after three adsorption–desorption cycles. These findings show that MOMMC represents an excellent adsorption material for the efficient removal of heavy-metal ions.

Funder

Promotion and Application of Foamed Concrete Preparation based on Vanadium Tailings

Basic Research Program of Natural Science of Shaanxi Province

Special Scientific Research Plan Project of Shaanxi Provincial Department of Education

Science and Technology Plan Project of Shangluo

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3