Algae-mediated synthesis of biogenic nanoparticles

Author:

Jain A

Abstract

Abstract In recent era, green trend of synthesising biogenic nanoparticles (NPs) is a sustainable, safe, environment-friendly, and relatively inexpensive substitute to conservative routes of NPs making. Biosynthesis route showcases significant properties such as the absence of poisonous chemical compounds used as stabilising or reducing agents, lack of toxic yields generated from the process, reduced energy consumption, inexpensiveness, and high scalability. This has made green synthesis methods more attractive than other traditional methods. Synthesis of nanomaterials (NMs) using algae extracts is a substantiating ecological, simple, low-priced biosynthesis process. The secondary metabolites from algae have been reported to reduce metal precursors to nanoparticles (metal, metal oxide, or bimetallic NPs). Moreover, they cap and stabilise. Depending on the site of NP formation, synthesis could occur intra or extra-cellularly. Among the varied series of algae mediated synthesis, the most commonly biosynthesised NPs are silver, gold, copper oxide, cuprous oxide and zinc oxide. The algal biosynthesised NPs have been reviewed for numerous biomedical applications, which comprise anti-cancerous, anti-fouling, anti-bacterial, anti-fungal, bioremediation, and biosensing activities. The current review draws the major stress on the basis behind the algal-mediated biosynthesis of metallic and metallic oxide NPs from various algae. Furthermore, special attention to critical understanding of biosynthesis mechanism of NPs from algae and their biomedical applications has been reviewed critically.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3