New Insight on the Cytoprotective/Antioxidant Pathway Keap1/Nrf2/HO-1 Modulation by Ulva intestinalis Extract and Its Selenium Nanoparticles in Rats with Carrageenan-Induced Paw Edema

Author:

Almukainzi May1ORCID,El-Masry Thanaa A.2,Selim Hend3ORCID,Saleh Asmaa1,El-Sheekh Mostafa4ORCID,Makhlof Mofida E. M.5,El-Bouseary Maisra M.6ORCID

Affiliation:

1. Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia

2. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt

3. Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt

4. Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt

5. Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt

6. Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt

Abstract

Currently, there is growing interest in exploring natural bioactive compounds with anti-inflammatory potential to overcome the side effects associated with the well-known synthetic chemicals. Algae are a rich source of bioactive molecules with numerous applications in medicine. Herein, the anti-inflammatory effect of Ulva intestinalis alone or selenium nanoparticles loaded with U. intestinalis (UISeNPs), after being fully characterized analytically, was investigated by a carrageenan-induced inflammation model. The pretreated groups with free U. intestinalis extract (III and IV) and the rats pretreated with UISeNPs (groups V and VI) showed significant increases in the gene expression of Keap1, with fold increases of 1.9, 2.27, 2.4, and 3.32, respectively. Similarly, a remarkable increase in the Nrf2 gene expression, with 2.09-, 2.36-, 2.59-, and 3.7-fold increases, was shown in the same groups, respectively. Additionally, the groups III, IV, V, and VI revealed a significantly increased HO-1 gene expression with a fold increase of 1.48, 1.61, 1.87, and 2.84, respectively. Thus, both U. intestinalis extract and the UISeNPs boost the expression of the cytoprotective/antioxidant pathway Keap1/Nrf2/HO-1, with the UISeNPs having the upper hand over the free extract. In conclusion, U. intestinalis and UISeNPs have proven promising anti-inflammatory activity through mediating different underlying mechanisms.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3